Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Integr Med ; 21(3): 268-276, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37069006

RESUMO

OBJECTIVE: Although there have been improvements in targeted therapy and immunotherapy, the majority of lung adenocarcinoma (LUAD) patients still lack effective therapies. Consequently, it is urgent to screen for new diagnosis biomarkers and pharmacological targets. Junctional adhesion molecule-like protein (JAML) was considered to be an oncogenic protein and may be a novel therapeutic target in LUAD. Kaempferol is a natural flavonoid that exhibits antitumor activities in LUAD. However, the effect of kaempferol on JAML is still unknown. METHODS: Small interfering RNA was used to knockdown JAML expression. The cell viability was determined using the cell counting kit-8 assay. The proliferation of LUAD cells was evaluated using the 5-ethynyl-2'-deoxyuridine incorporation assay. The migration and invasion of LUAD cells were evaluated by transwell assays. Molecular mechanisms were explored by Western blotting. RESULTS: JAML knockdown suppressed proliferation, migration and invasion of LUAD cells, and JAML deficiency restrained epithelial-mesenchymal transition (EMT) via inactivating the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Using a PI3K activator (740Y-P), rescue experiments showed that phenotypes to JAML knockdown in LUAD cells were dependent on the PI3K/AKT/mTOR pathway. Kaempferol also inhibited proliferation, migration and invasion of A549 and H1299 cells and partially suppressed EMT through the PI3K/AKT/mTOR pathway. Knockdown of JAML ameliorated the inhibitory effect of kaempferol on LUAD cells. Kaempferol exerted anticancer effects by targeting JAML. CONCLUSION: JAML is a novel target for kaempferol against LUAD cells. Please cite this article as: Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. J Integr Med. 2023; 21(3): 268-276.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Quempferóis/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
2.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142632

RESUMO

During the onset of acute inflammation, rapid trafficking of leukocytes is essential to mount appropriate immune responses towards an inflammatory insult. Monocytes are especially indispensable for counteracting the inflammatory stimulus, neutralising the noxa and reconstituting tissue homeostasis. Thus, monocyte trafficking to the inflammatory sites needs to be precisely orchestrated. In this study, we identify a regulatory network driven by miR-125a that affects monocyte adhesion and chemotaxis by the direct targeting of two adhesion molecules, i.e., junction adhesion molecule A (JAM-A), junction adhesion molecule-like (JAM-L) and the chemotaxis-mediating chemokine receptor CCR2. By investigating monocytes isolated from patients undergoing cardiac surgery, we found that acute yet sterile inflammation reduces miR-125a levels, concomitantly enhancing the expression of JAM-A, JAM-L and CCR2. In contrast, TLR-4-specific stimulation with the pathogen-associated molecular pattern (PAMP) LPS, usually present within the perivascular inflamed area, resulted in dramatically induced levels of miR-125a with concomitant repression of JAM-A, JAM-L and CCR2 as early as 3.5 h. Our study identifies miR-125a as an important regulator of monocyte trafficking and shows that the phenotype of human monocytes is strongly influenced by this miRNA, depending on the type of inflammatory stimulus.


Assuntos
MicroRNAs , Monócitos , Humanos , Inflamação/genética , Inflamação/metabolismo , Moléculas de Adesão Juncional/metabolismo , Lipopolissacarídeos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Quimiocinas/metabolismo , Receptor 4 Toll-Like/metabolismo
3.
JCI Insight ; 7(14)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708906

RESUMO

Although macrophages are undoubtedly attractive therapeutic targets for acute kidney injury (AKI) because of their critical roles in renal inflammation and repair, the underlying mechanisms of macrophage phenotype switching and efferocytosis in the regulation of inflammatory responses during AKI are still largely unclear. The present study elucidated the role of junctional adhesion molecule-like protein (JAML) in the pathogenesis of AKI. We found that JAML was significantly upregulated in kidneys from 2 different murine AKI models including renal ischemia/reperfusion injury (IRI) and cisplatin-induced AKI. By generation of bone marrow chimeric mice, macrophage-specific and tubular cell-specific Jaml conditional knockout mice, we demonstrated JAML promoted AKI mainly via a macrophage-dependent mechanism and found that JAML-mediated macrophage phenotype polarization and efferocytosis is one of the critical signal transduction pathways linking inflammatory responses to AKI. Mechanistically, the effects of JAML on the regulation of macrophages were, at least in part, associated with a macrophage-inducible C-type lectin-dependent mechanism. Collectively, our studies explore for the first time to our knowledge new biological functions of JAML in macrophages and conclude that JAML is an important mediator and biomarker of AKI. Pharmacological targeting of JAML-mediated signaling pathways at multiple levels may provide a novel therapeutic strategy for patients with AKI.


Assuntos
Injúria Renal Aguda , Injúria Renal Aguda/patologia , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Juncional/metabolismo , Rim/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
J Transl Med ; 20(1): 260, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672776

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is a heavy social burden worldwide. Because the mechanisms involved in LUAD remain unclear, the prognosis of LUAD remains poor. Consequently, it is urgent to investigate the potential mechanisms of LUAD. Junctional adhesion molecule-like protein (JAML), is recognized as a tumorigenesis molecule in gastric cancer. However, the role of JAML in LUAD is still unclear. Here we aimed to evaluate the role of JAML in LUAD. METHODS: qRT-PCR, Western blotting and immunohistochemistry were conducted to investigate the expression of JAML in LUAD tissues. JAML was knocked down and overexpressed in LUAD cells using transient transfection by siRNA and plasmids or stable transfection by lentivirus. Proliferation potential of LUAD cells were detected by Cell Counting Kit-8, EdU incorporation and Colony formation assay. Migration and invasion abilities of LUAD cells were determined by wound healing, transwell migration and invasion assays. Cell cycle and cell apoptosis were detected by flow cytometry. The effects of JAML in vivo were studied in xenograft tumor models. Western blotting was used to explore the molecular mechanisms of JAML function. In addition, rescue experiments were performed to verify the possible mechanisms. RESULTS: JAML expression was elevated in LUAD tissues compared with peritumor tissues, and this upregulation was positively related to pT and pTNM. Furthermore, both in vitro and in vivo, JAML silencing markedly repressed malignant behaviors of LUAD cells and vice versa. Knockdown of JAML also mediated cell cycle arrest at G0/G1 phase and promoted apoptosis in LUAD cells. Mechanistically, silencing JAML repressed the process of epithelial-mesenchymal transition by inactivating the Wnt/ß-catenin pathway in LUAD cells. Effects of JAML can be rescued by Wnt/ß-catenin pathway activator in A549 cells. CONCLUSIONS: Our data reveal the oncogenic role of JAML in LUAD, indicating that JAML may be a predictive biomarker and novel therapeutic target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Moléculas de Adesão Celular/metabolismo , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Neoplasias Pulmonares/patologia , Via de Sinalização Wnt , beta Catenina/metabolismo
5.
Tissue Barriers ; 10(3): 1996830, 2022 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719339

RESUMO

An intact intestinal barrier is crucial for immune homeostasis and its impairment activates the immune system and may result in chronic inflammation. The epithelial cells of the intestinal barrier are connected by tight junctions, which form an anastomosing network sealing adjacent epithelial cells. Tight junctions are composed of transmembrane and cytoplasmic scaffolding proteins. Transmembrane tight junction proteins at the apical-lateral membrane of the cell consist of occludin, claudins, junctional adhesion molecules, and tricellulin. Cytoplasmic scaffolding proteins, including zonula occludens, cingulin and afadin, provide a direct link between transmembrane tight junction proteins and the intracellular cytoskeleton. Each individual component of the tight junction network closely interacts with each other to form an efficient intestinal barrier. This review aims to describe the molecular structure of intestinal epithelial tight junction proteins and to characterize their organization and interaction. Moreover, clinically important biomarkers associated with impairment of gastrointestinal integrity are discussed.


Assuntos
Claudinas , Junções Íntimas , Biomarcadores/análise , Biomarcadores/metabolismo , Claudinas/metabolismo , Moléculas de Adesão Juncional/análise , Moléculas de Adesão Juncional/metabolismo , Ocludina/metabolismo , Junções Íntimas/metabolismo
6.
Front Immunol ; 12: 767456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759934

RESUMO

The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of contents from the intestinal lumen into the intestinal tissue and systemic circulation. A defective intestinal TJ barrier has been implicated as an important pathogenic factor in inflammatory diseases of the gut including Crohn's disease, ulcerative colitis, necrotizing enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory cytokines, which are produced during intestinal inflammation, including interleukin-1ß (IL-1ß), tumor necrosis factor-α, and interferon-γ, have important intestinal TJ barrier-modulating actions. Recent studies have shown that the IL-1ß-induced increase in intestinal TJ permeability is an important contributing factor of intestinal inflammation. The IL-1ß-induced increase in intestinal TJ permeability is mediated by regulatory signaling pathways and activation of nuclear transcription factor nuclear factor-κB, myosin light chain kinase gene activation, and post-transcriptional occludin gene modulation by microRNA and contributes to the intestinal inflammatory process. In this review, the regulatory role of IL-1ß on intestinal TJ barrier, the intracellular mechanisms that mediate the IL-1ß modulation of intestinal TJ permeability, and the potential therapeutic targeting of the TJ barrier are discussed.


Assuntos
Permeabilidade da Membrana Celular , Células Epiteliais/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Humanos , Mucosa Intestinal/citologia , Moléculas de Adesão Juncional/metabolismo , Modelos Biológicos , Quinase de Cadeia Leve de Miosina/metabolismo , Ocludina/metabolismo
7.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801758

RESUMO

The junction adhesion molecule (JAM) family of proteins play central roles in the tight junction (TJ) structure and function. In contrast to claudins (CLDN) and occludin (OCLN), the other membrane proteins of the TJ, whose structure is that of a 4α-helix bundle, JAMs are members of the immunoglobulin superfamily. The JAM family is composed of four members: A, B, C and 4. The crystal structure of the extracellular domain of JAM-A continues to be used as a template to model the secondary and tertiary structure of the other members of the family. In this article, we have expressed the extracellular domains of JAMs fused with maltose-binding protein (MBP). This strategy enabled the work presented here, since JAM-B, JAM-C and JAM4 are more difficult targets due to their more hydrophobic nature. Our results indicate that each member of the JAM family has a unique tertiary structure in spite of having similar secondary structures. Surface plasmon resonance (SPR) revealed that heterotypic interactions among JAM family members can be greatly favored compared to homotypic interactions. We employ the well characterized epithelial cadherin (E-CAD) as a means to evaluate the adhesive properties of JAMs. We present strong evidence that suggests that homotypic or heterotypic interactions among JAMs are stronger than that of E-CADs.


Assuntos
Caderinas/química , Claudinas/química , Proteínas Ligantes de Maltose/química , Ocludina/química , Antígenos CD/química , Cromatografia , Dicroísmo Circular , Biologia Computacional , Simulação por Computador , Escherichia coli/metabolismo , Humanos , Moléculas de Adesão Juncional/metabolismo , Cinética , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície , Junções Íntimas/metabolismo
8.
J Mol Histol ; 52(3): 545-553, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33763807

RESUMO

Junctional epithelium (JE) attaching to the enamel surface seals gaps around the teeth, functioning as the first line of gingival defense. Runt-related transcription factor 2 (Runx2) plays a role in epithelial cell fate, and the deficiency of Runx2 in JE causes periodontal destruction, while its effect on the barrier function of JE remains largely unexplored. In the present study, hematoxylin-eosin (H&E) staining revealed the morphological differences of JE between wild-type (WT) and Runx2 conditional knockout (cKO) mice. We speculated that these changes were related to the down-regulation of E-cadherin (E-cad), junctional adhesion molecule 1 (JAM1), and integrin ß6 (ITGB6) in JE. Moreover, immunohistochemistry (IHC) was conducted to assess the expressions of these proteins. To verify the relationship between Runx2 and the three above-mentioned proteins, human gingival epithelial cells (HGEs) were cultured for in vitro experiment. The expression of Runx2 in HEGs was depleted by lentivirus. Quantitative real-time PCR (qRT-PCR) and Western blotting analysis were adopted to analyze the differences in mRNA and protein expressions. Taken together, Runx2 played a crucial role in maintaining the structure and function integrality of JE via regulating the expressions of E-cad and JAM1.


Assuntos
Caderinas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Epitélio/metabolismo , Moléculas de Adesão Juncional/metabolismo , Dente Molar/metabolismo , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo , Células Epiteliais/metabolismo , Gengiva/citologia , Humanos , Cadeias beta de Integrinas/metabolismo , Mandíbula/metabolismo , Camundongos Knockout , Periodonto/metabolismo
9.
Cell Rep ; 33(2): 108253, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053339

RESUMO

While plasminogen activator inhibitor-1 (PAI-1) is known to potentiate cellular migration via proteolytic regulation, this adipokine is implicated as an oncogenic ligand in the tumor microenvironment. To understand the underlying paracrine mechanism, here, we conduct transcriptomic analysis of 1,898 endometrial epithelial cells (EECs) exposed and unexposed to PAI-1-secreting adipose stromal cells. The PAI-1-dependent action deregulates crosstalk among tumor-promoting and tumor-repressing pathways, including transforming growth factor ß (TGF-ß). When PAI-1 is tethered to lipoprotein receptor-related protein 1 (LRP1), the internalized signaling causes downregulation of SMAD4 at the transcriptional and post-translational levels that attenuates TGF-ß-related transcription programs. Repression of genes encoding the junction and adhesion complex preferentially occurs in SMAD4-underexpressed EECs of persons with obesity. The findings highlight a role of PAI-1 signaling that renders ineffective intercellular communication for the development of adiposity-associated endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Moléculas de Adesão Juncional/metabolismo , Obesidade/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteína Smad4/metabolismo , Tecido Adiposo/patologia , Regulação para Baixo/genética , Neoplasias do Endométrio/complicações , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Obesidade/complicações , Ligação Proteica , Proteólise , Proteômica , Proteína Smad4/genética , Células Estromais/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Ubiquitina/metabolismo
10.
BMC Mol Cell Biol ; 21(1): 30, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303178

RESUMO

BACKGROUND: Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is a recently identified cell adhesion molecule which is predominantly expressed by epithelial cells of the intestine and the kidney. Its expression is downregulated in both colon and renal cancer suggesting a tumor suppressive activity. The function of TMIGD1 at the cellular level is largely unclear. Published work suggests a protective role of TMIGD1 during oxidative stress in kidney epithelial cells, but the underlying molecular mechanisms are unknown. RESULTS: In this study, we address the subcellular localization of TMIGD1 in renal epithelial cells and identify a cytoplasmic scaffold protein as interaction partner of TMIGD1. We find that TMIGD1 localizes to different compartments in renal epithelial cells and that this localization is regulated by cell confluency. Whereas it localizes to mitochondria in subconfluent cells it is localized at cell-cell contacts in confluent cells. We find that cell-cell contact localization is regulated by N-glycosylation and that both the extracellular and the cytoplasmic domain contribute to this localization. We identify Synaptojanin 2-binding protein (SYNJ2BP), a PDZ domain-containing cytoplasmic protein, which localizes to both mitochondria and the plasma membrane, as interaction partner of TMIGD1. The interaction of TMIGD1 and SYNJ2BP is mediated by the PDZ domain of SYNJ2BP and the C-terminal PDZ domain-binding motif of TMIGD1. We also find that SYNJ2BP can actively recruit TMIGD1 to mitochondria providing a potential mechanism for the localization of TMIGD1 at mitochondria. CONCLUSIONS: This study describes TMIGD1 as an adhesion receptor that can localize to both mitochondria and cell-cell junctions in renal epithelial cells. It identifies SYNJ2BP as an interaction partner of TMIGD1 providing a potential mechanism underlying the localization of TMIGD1 at mitochondria. The study thus lays the basis for a better understanding of the molecular function of TMIGD1 during oxidative stress regulation.


Assuntos
Células Epiteliais/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citoplasma/metabolismo , Glicosilação , Humanos , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Domínios PDZ/genética , Ligação Proteica
11.
Theriogenology ; 142: 196-206, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31606658

RESUMO

The maternal endometrium undergoes transformations during early pregnancy period to regulate the paracellular permeability across the epithelium and to enable adhesion between the trophoblast and endometrial epithelial cells. These transformations, under the influence of ovarian hormones, are associated with a partial loss in polarity of epithelial cell that is regulated by tight junctions (TJ), adherens junctions (AJ) and associated polarity protein complexes. This study examined the change in expression and distribution of proteins associated with TJs, AJs and apical partition defective (PAR) complex in porcine endometrium on Days 10, 13 and 16 of estrous cycle and pregnancy. Moreover, effect of hormones, progesterone (P4) and 17-ß estradiol (E2) on polar phenotype of endometrial epithelial cells was also investigated in vitro. There was pregnancy induced increase in gene and protein expression of TJ associated claudin-1 (CLDN1) on Day 13 of pregnancy as compared to corresponding day of estrous cycle and a decrease in TJ protein, zona occludens-1 (ZO-1) and PAR complex associated PAR6 expression levels on Day 16 of pregnancy (P < 0.05). Immunofluorescence studies revealed that on Days 10 and 13, TJ proteins occludin (OCLN) and ZO-1were primarily present in the apical region of lateral epithelial membrane. On Day 16 of pregnancy, whereas, OCLN redistributed into cytoplasm, ZO-1 decreased apically but was found to localize in the basal epithelium. The AJ proteins cadherin and ß-catenin were located at the apical epithelium on Day 10 of estrous cycle and pregnancy and Day 13 of estrous cycle. On Days 13 and 16 of pregnancy both proteins were expressed in the lateral membrane and co-localization between these proteins was observed on Day 16. On Day 10, PAR complex proteins PAR3, cell division control protein 42 (CDC42) and atypical protein kinase C (aPKC) ζ were observed in apical epithelium and in lateral membrane and CDC42 was also present in the cytoplasm of epithelium. Pregnancy induced redistribution of aPKCζ to cytoplasm and CDC42 to apical surface of luminal epithelium was observed on Days 13 and 16. The in vitro P4 and E2 treatment of epithelial cells mimicked in vivo results. These results indicate that P4 and E2 regulate alterations in epithelium that may facilitate embryo implantation and given the role of cadherin, catenin and CDC42 in embryo invasion, change in distribution of these proteins may limit the invasiveness of porcine conceptuses into the stroma.


Assuntos
Polaridade Celular/genética , Endométrio/metabolismo , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Prenhez , Suínos , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Células Cultivadas , Implantação do Embrião/genética , Feminino , Expressão Gênica , Idade Gestacional , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Gravidez , Prenhez/genética , Prenhez/metabolismo , Suínos/embriologia , Suínos/genética , Suínos/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismo , Distribuição Tecidual
12.
Viruses ; 11(11)2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671627

RESUMO

It is known that levels of the anti-apoptotic protein survivin are reduced during Murine norovirus MNV-1 and Feline calicivirus (FCV) infection as part of the apoptosis establishment required for virus release and propagation in the host. Recently, our group has reported that overexpression of survivin causes a reduction of FCV protein synthesis and viral progeny production, suggesting that survivin may affect early steps of the replicative cycle. Using immunofluorescence assays, we observed that overexpression of survivin, resulted in the reduction of FCV infection not only in transfected but also in the neighboring nontransfected CrFK cells, thus suggesting autocrine and paracrine protective effects. Cells treated with the supernatants collected from CrFK cells overexpressing survivin showed a reduction in FCV but not MNV-1 protein production and viral yield, suggesting that FCV binding and/or entry were specifically altered. The reduced ability of FCV to bind to the surface of the cells overexpressing survivin, or treated with the supernatants collected from these cells, correlate with the reduction in the cell surface of the FCV receptor, the feline junctional adhesion molecule (fJAM) 1, while no effect was observed in the cells transfected with the pAm-Cyan vector or in cells treated with the corresponding supernatants. Moreover, the overexpression of survivin affects neither Vaccinia virus (VACV) production in CrFK cells nor MNV-1 virus production in RAW 267.4 cells, indicating that the effect is specific for FCV. All of these results taken together indicate that cells that overexpress survivin, or cell treatment with the conditioned medium from these cells, results in the reduction of the fJAM-1 molecule and, therefore, a specific reduction in FCV entry and infection.


Assuntos
Infecções por Caliciviridae/virologia , Calicivirus Felino/fisiologia , Survivina/metabolismo , Animais , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/metabolismo , Calicivirus Felino/metabolismo , Gatos , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Expressão Gênica , Interações Hospedeiro-Patógeno , Moléculas de Adesão Juncional/metabolismo , Receptores Virais/metabolismo , Especificidade da Espécie , Survivina/genética , Proteínas Virais/biossíntese , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
13.
J Pediatr Surg ; 53(6): 1203-1207, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29636182

RESUMO

BACKGROUND: Epidermal Growth Factor (EGF) reduces necrotizing enterocolitis (NEC). However, its high cost virtually prohibits clinical use. To reduce cost, soybean expressing human EGF was developed. Here we report effectiveness of soybean-derived EGF in experimental NEC. METHODS: Newborn rats were subjected to the NEC-inducing regimen of formula feeding and hypoxia. Formula was supplemented with extract from EGF-expressing or empty soybeans. NEC pathology was determined microscopically. Localization of tight junction proteins JAM-A and ZO-1 was examined by immunofluorescence and levels of mucosal COX-2 and iNOS mRNAs by real time PCR. RESULTS: Soybean extract amounts corresponding to 150µg/kg/day EGF caused considerable mortality, whereas those corresponding to 75µg/kg/day EGF were well tolerated. There was no significant difference in NEC scores between animals fed plain formula and formula supplemented with empty soybean extract. Soybean-EGF-supplemented formula at 75µg/kg/day EGF significantly decreased NEC, attenuated dissociation of JAM-A and ZO-1 proteins from tight junctions, and reduced intestinal expression of COX-2 and iNOS mRNAs. CONCLUSION: Supplementation with soybean-expressed EGF significantly decreased NEC in the rat model. Soybean-expressed EGF may provide an economical solution for EGF administration and prophylaxis of clinical NEC.


Assuntos
Enterocolite Necrosante/prevenção & controle , Fator de Crescimento Epidérmico/uso terapêutico , Glycine max , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Animais Recém-Nascidos , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Enterocolite Necrosante/patologia , Humanos , Fórmulas Infantis , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/patologia , Doenças do Prematuro/prevenção & controle , Mucosa Intestinal/metabolismo , Intestinos/patologia , Moléculas de Adesão Juncional/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico , Proteínas da Zônula de Oclusão/metabolismo
14.
Sci Rep ; 7(1): 17654, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247249

RESUMO

The mammalian orthoreovirus Type 3 Dearing has great potential as oncolytic agent in cancer therapy. One of the bottlenecks that hampers its antitumour efficacy in vivo is the limited tumour-cell infection and intratumoural distribution. This necessitates strategies to improve tumour penetration. In this study we employ the baculovirus Autographa californica multiple nucleopolyhedrovirus as a tool to expand the reovirus' tropism and to improve its spread in three-dimensional tumour-cell spheroids. We generated a recombinant baculovirus expressing the cellular receptor for reovirus, the Junction Adhesion Molecule-A, on its envelope. Combining these Junction Adhesion Molecule-A-expressing baculoviruses with reovirus particles leads to the formation of biviral complexes. Exposure of the reovirus-resistant glioblastoma cell line U-118 MG to the baculovirus-reovirus complexes results in efficient reovirus infection, high reovirus yields, and significant reovirus-induced cytopathic effects. As compared to the reovirus-only incubations, the biviral complexes demonstrated improved penetration and increased cell killing of three-dimensional U-118 MG tumour spheroids. Our data demonstrate that reovirus can be delivered with increased efficiency into two- and three-dimensional tumour-cell cultures via coupling the reovirus particles to baculovirus. The identification of baculovirus' capacity to penetrate into tumour tissue opens novel opportunities to improve cancer therapy by improved delivery of oncolytic viruses into tumours.


Assuntos
Glioma/virologia , Orthoreovirus Mamífero 3/fisiologia , Nucleopoliedrovírus/fisiologia , Terapia Viral Oncolítica , Infecções por Reoviridae/imunologia , Animais , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Glioma/patologia , Humanos , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Esferoides Celulares/patologia , Spodoptera , Carga Viral , Tropismo Viral
15.
Physiol Rev ; 97(4): 1529-1554, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931565

RESUMO

Junctional adhesion molecules (JAM)-A, -B and -C are cell-cell adhesion molecules of the immunoglobulin superfamily which are expressed by a variety of tissues, both during development and in the adult organism. Through their extracellular domains, they interact with other adhesion receptors on opposing cells. Through their cytoplasmic domains, they interact with PDZ domain-containing scaffolding and signaling proteins. In combination, these two properties regulate the assembly of signaling complexes at specific sites of cell-cell adhesion. The multitude of molecular interactions has enabled JAMs to adopt distinct cellular functions such as the regulation of cell-cell contact formation, cell migration, or mitotic spindle orientation. Not surprisingly, JAMs regulate diverse processes such as epithelial and endothelial barrier formation, hemostasis, angiogenesis, hematopoiesis, germ cell development, and the development of the central and peripheral nervous system. This review summarizes the recent progress in the understanding of JAMs, including their characteristic structural features, their molecular interactions, their cellular functions, and their contribution to a multitude of processes during vertebrate development and homeostasis.


Assuntos
Adesão Celular/fisiologia , Fenômenos Fisiológicos Celulares , Regulação da Expressão Gênica/fisiologia , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Animais , Imunoglobulinas/genética , Imunoglobulinas/metabolismo
16.
Eur J Histochem ; 61(2): 2763, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28735524

RESUMO

Recent innovations in stem cell technologies and the availability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have opened new possibilities for studies and drug testing on human cardiomyocytes in vitro. Still, there are concerns about the precise nature of such 'reprogrammed' cells. We have performed an investigation using immunocytochemistry and confocal microscopy on several cellular features using commercially available hiPSC-CMs. For some selected developmentally regulated or cardiac chamber-specific proteins, we have compared the results from hiPSC-derived cardiomyocytes with freshly isolated, ventricular cardiomyocytes from adult rats. The results show that all typical cardiac proteins are expressed in these hiPSC-CMs. Furthermore, intercalated disc-like structures, calcium cycling proteins, and myofibrils are present. However, some of these proteins are only known from early developmental stages of the ventricular myocardium or the diseased adult heart. A heterogeneous expression pattern in the cell population was noted for some muscle proteins, such as for myosin light chains, or incomplete organization in sarcomeres, such as for telethonin. These observations indicate that hiPSC-CMs can be considered genuine human cardiomyocytes of an early developmental state. The here described marker proteins of maturation may become instrumental in future studies attempting the improvement of cardiomyocyte in vitro models.


Assuntos
Citoesqueleto/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Animais , Células Cultivadas , Humanos , Imuno-Histoquímica , Moléculas de Adesão Juncional/metabolismo , Microscopia Confocal , Ratos
17.
Trends Immunol ; 38(8): 606-615, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28559148

RESUMO

Leukocyte transendothelial migration (TEM) takes place across micron-wide gaps in specific post-capillary venules generated by the transmigrating leukocyte. Because endothelial cells contain a dense cytoskeletal network, transmigrating leukocytes must overcome these mechanical barriers as they squeeze their nuclei through endothelial gaps and pores. Recent findings suggest that endothelial cells are not a passive barrier, and upon engagement by transmigrating leukocytes trigger extensive dynamic modifications of their actin cytoskeleton. Unexpectedly, endothelial contractility functions as a restrictor of endothelial gap enlargement rather than as a facilitator of gap formation as was previously suggested. In this review we discuss current knowledge regarding how accurately timed endothelial actin-remodeling events are triggered by squeezing leukocytes and coordinate leukocyte TEM while preserving blood vessel integrity.


Assuntos
Citoesqueleto de Actina/metabolismo , Endotélio Vascular/metabolismo , Leucócitos/citologia , Leucócitos/metabolismo , Migração Transendotelial e Transepitelial , Animais , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Endotélio Vascular/citologia , Humanos , Moléculas de Adesão Juncional/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 36(10): 2048-2057, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27515379

RESUMO

Endothelial cells line the lumen of all blood vessels and play a critical role in maintaining the barrier function of the vasculature. Sealing of the vessel wall between adjacent endothelial cells is facilitated by interactions involving junctionally expressed transmembrane proteins, including tight junctional molecules, such as members of the junctional adhesion molecule family, components of adherence junctions, such as VE-Cadherin, and other molecules, such as platelet endothelial cell adhesion molecule. Of importance, a growing body of evidence indicates that the expression of these molecules is regulated in a spatiotemporal manner during inflammation: responses that have significant implications for the barrier function of blood vessels against blood-borne macromolecules and transmigrating leukocytes. This review summarizes key aspects of our current understanding of the dynamics and mechanisms that regulate the expression of endothelial cells junctional molecules during inflammation and discusses the associated functional implications of such events in acute and chronic scenarios.


Assuntos
Permeabilidade Capilar , Células Endoteliais/metabolismo , Inflamação/metabolismo , Junções Intercelulares/metabolismo , Animais , Células Endoteliais/imunologia , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Junções Intercelulares/imunologia , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/imunologia , Moléculas de Adesão Juncional/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transdução de Sinais
19.
Zhonghua Shao Shang Za Zhi ; 32(1): 58-61, 2016 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-27426071

RESUMO

The maturation of dendritic epidermal T lymphocytes (DETCs) in thymus needs ligand-mediated positive selection, and positive selection together with V3γ(+) γδT lymphocytes intrinsic program features order DETCs to specifically migrate to epidermis. Positive selection promotes DETCs to express CD122, which is vital for DETCs to survive and proliferate in skin. DETCs possess memory-like phenotype and are able to rapidly respond to danger signals when they move out from thymus. NKG2D, junctional adhesion molecule-like protein and 2B4 are demonstrated to participate in DETCs activation, except for ligands of T lymphocytes receptor. Effective DETCs secrete cytokines such as interferon-γ, insulin-like growth factor-2, keratinocyte growth factor and gain cytotoxicity to directly kill tumor cells. DETCs participate in skin immune surveillance, regulation of local inflammation, and wound healing promotion.


Assuntos
Células Epidérmicas , Epiderme/imunologia , Linfócitos T/citologia , Antígenos CD/metabolismo , Movimento Celular , Fator 7 de Crescimento de Fibroblastos/metabolismo , Humanos , Vigilância Imunológica , Inflamação/imunologia , Fator de Crescimento Insulin-Like II/metabolismo , Interferon gama/metabolismo , Subunidade beta de Receptor de Interleucina-2/metabolismo , Moléculas de Adesão Juncional/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Receptores Imunológicos/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária , Pele/imunologia , Timo/citologia , Cicatrização/imunologia
20.
J Nutr ; 146(3): 501-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26865645

RESUMO

BACKGROUND: The tight junctions (TJs) are essential for maintenance of the intestinal mucosal barrier integrity. Results of our recent work show that dietary l-glutamine (Gln) supplementation enhances the protein abundance of TJ proteins in the small intestine of piglets. However, the underlying mechanisms remain largely unknown. OBJECTIVE: This study was conducted to test the hypothesis that Gln regulates TJ integrity through calcium/calmodulin-dependent kinase 2 (CaMKK2)-AMP-activated protein kinase (AMPK) signaling which, in turn, contributes to improved intestinal mucosal barrier function. METHODS: Jejunal enterocytes isolated from a newborn pig were cultured in the presence of 0-2.0 mmol Gln/L for indicated time points. Cell proliferation, monolayer transepithelial electrical resistance (TEER), paracellular permeability, expression and distribution of TJ proteins, and phosphorylated AMPK were determined. RESULTS: Compared with 0 mmol Gln/L, 2.0 mmol Gln/L enhanced (P < 0.05) cell growth (by 31.9% at 48 h and 11.1% at 60 h). Cells treated with 2 mmol Gln/L increased TEER by 32.2% at 60 h, and decreased (P < 0.05) TJ permeability by 20.3-40.0% at 36-60 h. In addition, 2.0 mmol Gln/L increased (P < 0.05) the abundance of transmembrane proteins, such as occludin, claudin-4, junction adhesion molecule (JAM)-A, and the plaque proteins zonula occludens (ZO)-1, ZO-2, and ZO-3 by 1.8-6 times. In contrast, 0.5 mmol Gln/L had a moderate effect on TJ protein abundance (20.2-70.5%; P < 0.05) of occludin, claudin-3, claudin-4, JAM-A, and ZO-1. 2.0 mmol Gln/L treatment led to a greater distribution of claudin-1, claudin-4, and ZO-1 at plasma membranes compared with 0 mmol Gln/L. This effect of Gln was mediated by the activation of CaMKK2-AMPK signaling, because either depletion of calcium from the medium or the presence of an inhibitor of CaMKK2 abrogated the effect of Gln on epithelial integrity. CONCLUSION: Our findings indicate that activation of CaMKK2-AMPK signaling by Gln is associated with improved intestinal mucosal barrier function through enhancing the abundance of TJ proteins and altering their intracellular localization in intestinal porcine epithelial cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Células Epiteliais/efeitos dos fármacos , Glutamina/farmacologia , Transdução de Sinais , Junções Íntimas/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Animais , Animais Recém-Nascidos , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Claudina-4/genética , Claudina-4/metabolismo , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/efeitos dos fármacos , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Ocludina/genética , Ocludina/metabolismo , Fosforilação , Suínos , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-2/genética , Proteína da Zônula de Oclusão-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA